

Insulin 5 units or 0.1 units/kilogram v 10 units for Hyperkalemia

Introduction

- 1. Severe hyperkalemia is a potentially life-threatening condition and should be treated immediately due to risk of muscle paralysis and lethal cardiac arrhythmias.¹
- 2. Serum potassium is elevated primarily for one of two reasons:
 - (1) Extracellular potassium shifts
 - (2) Decreased renal excretion
- 3. Insulin is one of many rapid treatment methods of hyperkalemia because of its potential to shift potassium intracellularly by increasing Na+-K+ ATPase activity in a dose-dependent manner.¹
- 4. Other treatment and stabilization methods for hyperkalemia include calcium, beta-agonists, sodium bicarbonate, exchange resins, diuretics, and hemodialysis.¹
- 5. The use of Insulin + glucose as a treatment modality for hyperkalemia is popular in an acute care setting, but patients should be monitored closely for hypoglycemia and other potential adverse drug reactions.

	Regular Insulin		
How Supplied	U-100 vials \rightarrow 100 units per 1 mL ² U-500 vials \rightarrow 500 units per 1 mL ²		
Category	Short-acting ²		
Administration	Intravenous ²		
PK/PD	Onset: ~15-20min ² Duration: ~1.5-2hrs ² Half-life: ~30min-1hr (dose-dependent) ²		
Adverse Effects	Hypoglycemia, irritation at site of infusion/injection, edema, hypokalemia ²		
Drug Interactions and warnings	Caution with medications that may alter glucose regulation ² (ex. Diabetes medications, fluoroquinolones, octreotide, hydroxychloroquine, ACEs/ARBs, corticosteroids, antipsychotics) Caution with medications that may mask signs/symptoms of hypoglycemia ² (ex. Beta-blockers, clonidine, lithium)		
Compatibility	NS, D5W, D10W, D5/½NS, LR, D5LR ²		

Overview of Evidence				
Author, year	Design/ sample size	Intervention & Comparison	Outcome	
Pierce et al. 2015	Retrospective ED, ICU, & non-ICU patients with low eGFR and hyperkalemia (K>6). (n=149)	10u (n=78) v 5u (n=71)	Safety: No difference in rate of hypoglycemia (BG ≤ 70) or severe hypoglycemia (BG < 50). [About 30% of the hypoglycemic episodes in the 10u group occurred outside the 4hr monitoring window.]	
LaRue et al. 2017	Retrospective ED patients with renal insufficiency and hyperkalemia (K>5). (n=675)	10∪ (n=542) ∨ 5∪ (n=133)	Efficacy: Serum potassium was reduced to the same extent between groups. Safety: Lower rates of hypoglycemia with 5u.	
McNicholas et al. 2018	Retrospective ED patients with CKD/ESRD and hyperkalemia (K≥6). (n=139)	10u (n=76) v 5u (n=63)	<u>Safety:</u> Less instances of hypoglycemia and no instances of severe hypoglycemia with 5u.	
Garcia et al. 2020	Retrospective ED, ICU, & non-ICU patients with hyperkalemia (K>5.1). (n=401)	10u (n=309) v 5u (n=92)	Efficacy: No difference in potassium reduction between groups. [Patients with K+ > 6 had a 0.23 greater reduction in K+ with 10u.]	
Keeney et al. 2020	Retrospective ED patients with hyperkalemia. (n=442)	10∪ (n=295) ∨ 5∪ (n=147)	Efficacy: No difference in potassium reduction between the groups regardless of renal function. <u>Safety:</u> Lower occurrence of hypoglycemia with 5u, especially when eGFR < 45.	
Wheeler et al. 2016	Retrospective ED, ICU, & non-ICU patients with hyperkalemia. (n=132)	10u (n=66) v 0.1u/kg [max 10u] (n=66) (69.9±14.2kg) (74.2±12.6kg)	Efficacy: No difference in potassium reduction between the groups. Safety: Less hypoglycemia episodes with 0.1u/kg [Increased hypoglycemia in female patients and patients with BG < 140.]	
Brown et al. 2018	Retrospective ED, ICU, & non-ICU patients with hyperkalemia (K>5). (n=264)	10u (n=69) v 0.1u/kg [max 10u] (n=195) (82.9±28.3kg) (90±28.3kg)	Efficacy: No difference in potassium reduction between the groups. Safety: Lower rates of hypoglycemia with 0.1u/kg.	
Tran et al. 2020	Observational/Prospective ED, ICU, & non-ICU patients with hyperkalemia. (n=370)	10u (n=225) v 0.1u/kg [max N/A] (n=145) (78.8±26.9kg) (75.7±25.4kg)	<u>Safety:</u> Decreased episodes of hypoglycemia with 0.1u/kg dosing and ordersets. [The greatest risk factors for hypoglycemia was poor renal function (SCr > 2.5), high doses of insulin (>0.14u/kg), insulin use with low BG (BG < 140).]	
Zuern et al. 2020	Retrospective ED, ICU, & non-ICU patients with hyperkalemia (K>5). (n=165)	10u (n=90) v 0.1u/kg [max 10u] (n=75) (88kg:72.5-110) (84.4kg:75.3-106.6) ved additional standard of care for trec	Efficacy: Both groups had similar potassium reduction. Safety: Fewer hypoglycemic and severe hypoglycemic episodes with 0.1u/kg.	

Conclusions

- There is **no difference** in the extent of **potassium reduction** with various insulin dosing strategies for hyperkalemia treatment.
- The use of **5u insulin** for hyperkalemia resulted in **less episodes of hypoglycemia** compared to 10u insulin, which is approximately 0.1u/kg, based on the weight of the general patient population.
- Hyperkalemia treatment order panels/sets may be useful to **ensure cautious monitoring of hypoglycemia** for patients treated with insulin and renal dysfunction.

References

- 1. Mushiyakh et al. J Community Hosp Intern Med Perspect. 2011; 1(4). (PMID 23882341)
- 2. Insulin regular: Drug Information [Lexicomp]
- 3. Pierce et al. Ann Pharmacother. 2015; 49(12): 1322-1326. (PMID 26416951)
- 4. LaRue et al. Pharmacotherapy. 2017; 37(12): 1516-1522. (PMID 28976587)
- 5. McNicholas et al. Kidney Int Rep. 2018; 3(2): 328-336. (PMID 29725636)

- 6. Garcia et al. J Pharmacy Prac. 2020; 33(3): 262-266. (PMID 30189765)
- 7. Keeney et al. Am J Emerg Med. 2020; 38(6): 1082-1085. (PMID 31377014)
- 8. Wheeler et al. J Hosp Med. 2016; 11(5): 355-357. (PMID 26762588)
- 9. Brown et al. Am J Med Qual. 2018; 33(6): 598-603. (PMID 29553285)
- 10. Tran et al. J Hosp Med. 2020; 15: 81-86.

(PMID 32039749) 11. Zuern et al. Hosp Pharm. 2020; 55(4): 240-245. (PMID 32742012)